Trail Systems as fault tolerant wires and their use in bio-processors

نویسنده

  • Nicolas GLADE
چکیده

Motivated by the idea that one day, probably far in the future, the computers and robots will be architectureless, made of collections of numerous ’intelligent’ subsystems or nanomachines able to self-organize each other into computational morphologies with perhaps more computational power than classical electronicbased computers, many studies are burgeoning in different fields (chemistry, biology, condensed matter, quantum physics, ...). Several systems inspired from Nature have indeed been proposed yet for designing unconventional computer architectures using processing modes of various nature and at different scales. The heterogeneous set of natural or artificially designed systems called trail systems, commonly associated to self-driven particles (agents) with tropistic activity (through a communication based on traces let in the environment), is a soft matter with self-organizing properties sufficiently robust and fine for designing biocomputing structures. In this context, individual trails systems could be viewed as single wires and logical gates in a self-organized bio-processor, in the same manner axons are connecting the neural nodes in a neuro-processor. Their efficiency as wires depends on their specific properties which are often related to their scale. The robustness of their self-organization at the microscopic scale level occurring in a noisy environment, can be studied by a model based on effective computing systems (i.e. Turing machines) programmed to behave first as deterministic and perfect trail systems, then as stochastic-working trailing agents subject to randomness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel Defect Terminolgy Beside Evaluation And Design Fault Tolerant Logic Gates In Quantum-Dot Cellular Automata

Quantum dot Cellular Automata (QCA) is one of the important nano-level technologies for implementation of both combinational and sequential systems. QCA have the potential to achieve low power dissipation and operate high speed at THZ frequencies. However large probability of occurrence fabrication defects in QCA, is a fundamental challenge to use this emerging technology. Because of these vari...

متن کامل

Evolutionary QCA Fault-Tolerant Reversible Full Adder

Today, the use of CMOS technology for the manufacture of electronic ICs has faced many limitations. Many alternatives to CMOS technology are offered and made every day. Quantum-dot cellular automata (QCA) is one of the most widely used. QCA gates and circuits have many advantages including small size, low power consumption and high speed. On the other hand, using special digital gates called re...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

Formal Techniques for Synchronized Fault-tolerant Systems 1

We present the formal veriication of synchronizing aspects of the Reliable Computing Platform (RCP), a fault-tolerant computing system for digital ight control applications. The RCP uses NMR-style redundancy to mask faults and internal majority voting to purge the eeects of transient faults. The system design has been formally speciied and veriied using the Ehdm veriication system. Our formaliz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009